



# **ABS**

# **Technical Data Sheet**

ABS is an enhanced formulation of standard ABS, offering improved mechanical strength, reduced odor, and a lower shrinkage rate. Known for its toughness and high impact resistance, ABS is ideal for printing robust, long-lasting parts. It features low VOC emissions and minimal odor during processing, ensuring a cleaner and more comfortable printing environment. With its low shrinkage characteristics, ABS minimizes the risk of warping or cracking, making it a reliable choice for precise and stable prints.

| Material Status   | Mass Production                                                                     |                                                                                 |                        |
|-------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|
| Characteristics   | <ul><li>Heat resistance</li><li>Sturdy and durable</li><li>High toughness</li></ul> | <ul><li>Low odor</li><li>Low shrinkage</li><li>High impact resistance</li></ul> | Excellent printability |
| Applications      | <ul><li>Machinery</li><li>Mould</li><li>Electrical products</li></ul>               | <ul><li>Toy</li><li>Automobile</li></ul>                                        |                        |
| Form              | • Filament                                                                          |                                                                                 |                        |
| Processing Method | 3D Print, FDM Print                                                                 |                                                                                 |                        |

| Physical Properties   | Testing Method | Typical | Value        |
|-----------------------|----------------|---------|--------------|
| Density               | GB/T 1033      | 1.06    | g/cm³        |
| Melt Flow Index       | GB/T 3682      | 15      | (220°C/10kg) |
| Mechanical Properties |                |         |              |
| Tensile Strength      | GB/T 1040      | 40      | MPa          |
| Elongation at Break   | GB/T 1040      | 30      | %            |
| Flexural Strength     | GB/T 9341      | 68      | MPa          |
| Flexural Modulus      | GB/T 9341      | 1203    | MPa          |
| IZOD Impact Strength  | GB/T 1843      | 42      | kJ/m²        |



| Thermal Properties                   |               |     |    |
|--------------------------------------|---------------|-----|----|
| Heat distortion Temperature          | GB/T 1634     | 73  | °C |
| Continuous Service Temperature       | IEC 60216     | N/A |    |
| Maximum (short term) Use Temperature |               | N/A |    |
| Electrical Properties                |               |     |    |
| Insulation Resistance                | DIN IEC 60167 | N/A |    |
| Surface Resistance                   | DIN IEC 60093 | N/A |    |

# Recommended printing parameters

For optimal print quality and dimensional accuracy, the following parameters are recommended for ABS:

| Parameter                  | Recommended Range |
|----------------------------|-------------------|
| Extruder Temperature       | 230-270°C         |
| Build Platform Temperature | 95–110°C          |
| Fan Speed                  | 100%              |
| Printing Speed             | 40-100 mm/s       |

Settings are based on a 0.4 mm nozzle using Simplify3D v4.1.2. Actual results may vary depending on printer model, nozzle diameter, and environmental conditions.

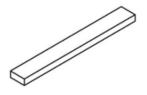
# **Drying Recommendations**

No specific drying required.

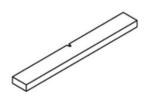
#### **Precautions**

# 1. Maintain Controlled Temperature:

ABS material exhibits a relatively high shrinkage rate. To prevent warping or cracking, ensure proper temperature control during printing.. It is recommended to use a 3D printer with a fully enclosed build chamber for consistent temperature control.


#### 2. Optimize Cooling and Print Settings:

Since ABS has low cooling efficiency, you may enable the cooling fan to improve surface finish. Alternatively, consider reducing overhang angles in the model or lowering the print speed to achieve improved layer adhesion and print quality.


#### **Mechanical Properties**



Tensile testing specimen GB/T 1040



Flexural testing specimen GB/T 9341



Impact testing specimen GB/T 1043

The listed physical, mechanical, thermal, and electrical properties are derived from injection-molded test specimens under standard test conditions.



| Print Test Condition:      |                     |
|----------------------------|---------------------|
| Parameter                  | Recommended Setting |
| Extruder Temperature       | 230-270°C           |
| Build Platform Temperature | 95°C                |
| Outline / Perimeter Shells | 4                   |
| Top / Bottom Layers        | 4                   |
| Infill Percentage          | 20                  |
| Fan Speed                  | 0%                  |
| Printing Speed             | 40 mm/s             |

Based on: 0.4 mm nozzle and Simplify3D v4.1.2

# Notice

All information provided by or on behalf of Mech Power regarding this material, whether data, recommendations, or performance details, is based on thorough testing and supplied in good faith. However, the material is offered 'as is', without any express or implied warranties, including, but not limited to, merchantability or fitness for a particular purpose. Mech Power assumes no liability arising from the use or reliance on this information. Users are advised to conduct their own evaluations to determine suitability for specific applications.